PS7 Soit
$$f$$
 la fonction définie par $f(x) = \begin{cases} \frac{e^{-1/x}}{x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

Partie A: étude d'une fonction

- 1. Etudier la continuité et la dérivabilité à gauche et à droite en 0 de f.
- **2.** Etudier les variations et les limites aux bornes de f.
- **3.** Construire le graphique (C) de f.

Partie B: calcul d'une aire

- **4.** Pour $h \in]0,1[$ calculer l'aire $\mathcal{A}(h)$ de la région du plan comprise entre (C), l'axe des réels et les deux droites d'équation x = h et x = 1.
- **5.** Calculer l'aire de la région du plan délimitée par (C), la droite d'équation x=1 et l'axe des ordonnées c'est à dire $\lim_{h\to 0} \mathcal{A}(h)$.

Partie C: résolution d'une équation différentielle

- **6.** Résoudre l'équation différentielle $x^2y' + (2x-1)y = 0$ sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 7. Existe t-il des solutions dans \mathbb{R} ?

Partie D: étude d'une famille de polynômes

8. Soit n un entier naturel. Montrer que f est n fois dérivable et qu'il existe un polynôme P_n à coefficients réels tel que :

$$\forall x > 0, f^{(n)}(x) = \frac{P_n(x) e^{-1/x}}{x^{2n+2}}, \text{ et } P_{n+1}(x) = x^2 P'_n(x) + [1 - 2(n+1)x] P_n(x)$$
 (1).

- **9.** Calculer P_i pour $0 \le i \le 3$.
- **10.** Soit la fonction g définie pour tout réel x par $g(x) = x^2 f(x)$.

Montrer que : $\forall x > 0, g'(x) = f(x)$. En déduire que pour tout entier naturel n et tout réel x > 0 on a :

$$g^{(n+1)}(x) = f^{(n)}(x)$$
.

11. En utilisant la formule de Leibniz calculer pour n entier supérieur ou égal à 2 et tout réel x > 0, $g^{(n)}(x)$ en fonction de $f^{(n)}(x)$, $f^{(n-1)}(x)$ et $f^{(n-2)}(x)$.

Déduire des deux questions précédentes que pour tout entier naturel $n \geq 1$ et tout réel x>0 :

$$P_{n+1}(x) = [1 - 2(n+1)x] P_n(x) - n(n+1)x^2 P_{n-1}(x).$$

12. En déduire que pour tout entier naturel $n \ge 1$ et tout réel x > 0 :

$$P'_{n}(x) = -n(n+1)P_{n-1}(x)$$
 (2).

Calculer le degré de P_n en fonction de n.

13. Déduire de **(1)** et de **(2)** que :

$$\forall x > 0, \forall n \in \mathbb{N}, x^{2}P_{n}^{"} + (1 - 2nx)P_{n}^{'} + n(n+1)P_{n} = 0.$$

Partie E: étude d'un endomorphisme

Pour n entier naturel non nul on considère l'application φ de $\mathbb{R}_n\left[X\right]$ dans $\mathbb{R}\left[X\right]$ définie par

$$\varphi(P(X)) = X^{2}P''(X) + (1 - 2nX)P'(X).$$

- **14.** Montrer que φ définit un endomorphisme de $\mathbb{R}_n[X]$ (que l'on continuera à noter φ). (On admettra que φ est linéaire).
- **15.** Montrer que la famille $B = (P_0, P_1, \dots, P_n)$ constitue une base de $\mathbb{R}_n [X]$. (les polynômes P_i sont ceux définis dans la partie D).
- 16. Trouver la matrice de φ dans la base B.

En déduire le rang, la dimension du noyau et le noyau de φ .

Corrigé:

:

Partie A: étude d'une fonction

1. Quand x tend vers 0^- , $e^{-1/x}$ tend vers $+\infty$ donc $\lim_{x\to 0^-} f(x) = +\infty$.

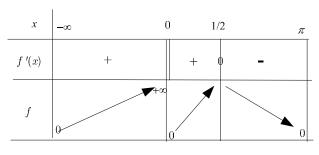
Pour la limite à droite en 0 on pose $X = -\frac{1}{x}$, donc $\lim_{x \to 0^+} X = -\infty$. Comme $f(x) = X^2 e^X$ et $\lim_{x \to -\infty} X^2 e^X = 0$, on a $\lim_{x \to 0^+} f(x) = 0$.

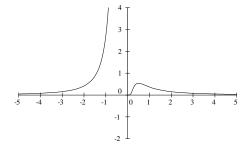
La fonction f n'est donc pas continue (donc pas dérivable) à gauche mais elle est continue à droite car $f(0) = 0 = \lim_{x \to 0^+} f(x)$.

Le taux de variation de f est $\tau = \frac{e^{-1/x}}{x^3} = X^3 e^X$ avec la notation précédente, qui tend vers 0 quand X tend vers 0^+ . La fonction f est donc dérivable à droite et $f_d'(0) = 0$.

2. Pour tout réel x non nul on a $f'(x) = \frac{e^{-1/x}}{x^2} \cdot x^2 - 2xe^{-1/x} = \frac{1-2x}{x^4}e^{-1/x}$, du signe de 1-2x. En $\pm \infty$ la fonction $e^{-1/x}$ tend vers 1 donc $f(x) \sim \frac{1}{x^2}$, donc $\lim_{x \to \pm \infty} f(x) = 0$.

On en déduit le tableau de variation et le graphique de f.





Partie B: calcul d'une aire

- **4.** On a $\mathcal{A}(h) = \int_{h}^{1} \frac{e^{-1/x}}{x^{2}} dx = \left[e^{-1/x}\right]_{h}^{1} = e^{-1} e^{-1/h}$, donc $\mathcal{A}(h) = e^{-1} e^{-1/h}$.
- 5. On a $\lim_{h\to 0^+} e^{-1/h} = 0$ donc l'aire de la région du plan délimitée par (C), la droite d'équation x=1 et l'axe des ordonnées est e^{-1} .

Partie C: résolution d'une équation différentielle

6. Sur \mathbb{R}^* l'équation différentielle est équivalente à $y' + \frac{2x-1}{x^2}y = 0$. Sur \mathbb{R}_+^* ou \mathbb{R}_-^* les solutions sont $y(x) = Ce^{-A(x)}$ avec $A(x) = \int \frac{2x-1}{x^2} dx = \int \left(\frac{2}{x} - \frac{1}{x^2}\right) dx = 2\ln|x| + \frac{1}{x}$.

On a donc
$$y(x) = Ce^{-2\ln|x| - \frac{1}{x}} = C\frac{e^{-1/x}}{x^2} = Cf(x)$$
.

Les solutions l'équation différentille sur \mathbb{R}^* sont donc $y(x) = \begin{cases} Cf(x) & \text{si } x > 0 \\ C'f(x) & \text{si } x < 0 \end{cases}$, où C et C' sont deux constantes arbitraires.

7. Si $C' \neq 0$ alors C'f(x) tend vers $\pm \infty$ quand x tend vers 0^- . D'autre part Cf(x) tend vers 0 quand x tend vers 0^+ . On peut prolonger par continuité y en 0 (en posant y(0) = 0) ssi C' = 0.

Regardons si ce prolongement est dérivable en 0: le taux d'accroissement de y en 0 est $Cf(x) = C\frac{e^{-1/x}}{x^2}$ pour x > 0 et 0 pour x < 0. Il tend donc vers 0 quand x tend vers 0. Le prolongement de y est donc dérivable et y'(0) = 0.

Enfin il est clair que cette fonction est solution de l'équation différentielle.

Conclusion: les solutions de l'équation différentielle sur $\mathbb R$ sont :

$$y(x) = \begin{cases} Cf(x) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}.$$

Partie D: étude d'une famille de polynômes

8. Soit la propriété P_n : "f est n fois dérivable sur \mathbb{R}_+^* et $\exists P_n \in \mathbb{R}[X]/\forall x > 0, f^{(n)}(x) = \frac{P_n(x)e^{-1/x}}{x^{2n+2}}$ et $P_{n+1}(x) = x^2P'_n(x) + [1-2(n+1)x]P_n(x)$ ".

La propriété est vraie pour n = 0 avec $P_0(x) = 1$ et $P_1(x) = 1 - 2x$.

Supposons que P_n soit vraie pour un certain n. Alors $\forall x > 0$, $f^{(n)}(x) = \frac{P_n(x)e^{-1/x}}{x^{2n+2}}$ donc f est n+1 fois dérivable sur \mathbb{R}_+^* et $\forall x > 0$, $f^{(n+1)}(x) = \frac{\left(P_n(x)e^{-1/x}\right)'x^{2n+2} - P_n(x)e^{-1/x} \cdot (2n+2)x^{2n+1}}{x^{4n+4}} = \frac{\left(P'_n(x)e^{-1/x} + \frac{P_n(x)}{x^2}e^{-1/x}\right)x^{2n+2} - P_n(x)e^{-1/x} \cdot (2n+2)x^{2n+1}}{x^{4n+4}}$, soit $f^{(n+1)}(x) = \left(\frac{P'_n(x)x^{2n+2} + P_n(x)x^{2n} - P_n(x)(2n+2)x^{2n+1}}{x^{4n+4}}\right)e^{-1/x} = \left(\frac{x^2P'_n(x) + (1-2(n+1)x)P_n(x)}{x^{2n+4}}\right)e^{-1/x}$, de la forme $\frac{P_{n+1}(x)e^{-1/x}}{x^{2n+4}}$ avec $P_{n+1}(x) = x^2P'_n(x) + (1-2(n+1)x)P_n(x)$.

La propriété est donc vraie pour n+1.

Elle est donc vraie pour tout entier naturel n.

- **9.** On a $P_0(x) = 1$, $P_1(x) = 1 2x$ et en utilisant la relation précédente on trouve facilement $P_2(x) = 6x^2 6x + 1$, $P_3(x) = -24x^3 + 36x^2 12x + 1$.
- **10.** Pour tout réel x > 0 on a $g'(x) = 2xf(x) + x^2f'(x) = 2\frac{e^{-1/x}}{x} + x^2\frac{1-2x}{x^4}e^{-1/x} = \frac{1}{x^2}e^{-1/x} = f(x)$.

Par une récurrence évidente on a alors : $\forall n \in \mathbb{N}, g^{(n+1)}(x) = f^{(n)}(x)$

11. On a, d'après la question précédente et la formule de Leibniz : $\forall n \in \mathbb{N}, g^{(n)}(x) = (x^2 f(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (x^2)^{(k)} f^{(n-k)}(x)$. Comme $(x^2)^{(k)} = 0$ pour $k \geq 3$ il ne reste dans la somme que les termes correspondant à k = 0, 1, 2, donc :

$$g^{(n)}(x) = x^{2} f^{(n)}(x) + 2nx f^{(n-1)}(x) + n(n-1) f^{(n-2)}(x)$$

Comme $g^{(n+1)}(x) = f^{(n)}(x)$ on en déduit que pour x > 0 et $n \ge 1$: $f^{(n)}(x) = x^2 f^{(n+1)}(x) + 2(n+1)xf^{(n)}(x) + n(n+1)f^{(n-1)}(x)$.

D'après 8/ cela s'écrit : $\frac{P_n(x)e^{-1/x}}{x^{2n+2}} = x^2 \frac{P_{n+1}(x)e^{-1/x}}{x^{2n+4}} + 2(n+1) x \frac{P_n(x)e^{-1/x}}{x^{2n+2}} + n(n+1) \frac{P_{n-1}(x)e^{-1/x}}{x^{2n}}$, soit $P_n(x) = P_{n+1}(x) + 2(n+1) x P_n(x) + n(n+1) x^2 P_{n-1}(x)$ ou encore :

$$\forall x > 0, \forall n \in \mathbb{N}^*, P_{n+1}(x) = [1 - 2(n+1)x]P_n(x) - n(n+1)x^2P_{n-1}(x)$$

12. En reportant la relation précédente dans (1) on obtient : $-n(n+1)x^2P_{n-1}(x) = x^2P'_n(x)$, soit, pour tout réel x > 0 et tout entier $n \ge 1$, $P'_n(x) = -n(n+1)P_{n-1}(x)$.

Par une récurrence facile on en déduit que le degré de P_n est n pour tout $n \in \mathbb{N}$.

13. En dérivant (1) on a : $P'_{n+1}(x) = 2xP'_n(x) + x^2P''_n(x) - 2(n+1)P_n(x) + [1-2(n+1)x]P'_n(x)$, soit $P'_{n+1}(x) = x^2P''_n(x) + [1-2nx]P'_n(x) - 2(n+1)P_n(x)$.

D'après la question précédente on a $P'_{n+1}(x) = -(n+1)(n+2)P_n(x)$, donc $-(n+1)(n+2)P_n(x) = x^2P''_n(x) + [1-2nx]P'_n(x) - 2(n+1)P_n(x)$ soit :

$$\forall x > 0, \forall n \in \mathbb{N}, x^2 P_n'' + (1 - 2nx) P_n' + n(n+1) P_n = 0.$$

Partie E: étude d'un endomorphisme

14. On voit facilement que φ est linéaire. D'autre part, si $P \in \mathbb{R}_n[X]$ on a $d^{\circ}(X^2P_n^{"}(X)) \leq n$ et $d^{\circ}((1-2nX)P_n'(X)) \leq n$ donc $d^{\circ}(X^2P_n^{"}(X)+(1-2nX)P_n'(X)) \leq n$ soit $\varphi(P) \in \mathbb{R}_n[X]$.

Conclusion : φ est un endomorphisme de $\mathbb{R}_n[X]$.

- **15.** La famille (P_0, P_1, \ldots, P_n) est libre car constituée de polynômes non nuls de degrés deux distincts; comme elle possède n+1 éléments c'est une base de $\mathbb{R}_n[X]$ (car dim $\mathbb{R}_n[X] = n+1$).
 - 17. D'après la question 14/ on a, pour tout entier naturel $n: \varphi(P_n) = -n(n+1)P_n$. La matrice de φ dans la base B est donc :

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & -1 \times 2 & & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & \cdots & -n(n+1) \end{pmatrix}.$$

On a immédiatement : $rg\varphi = rgM = n$.

D'après le théorème du rang on a donc dim ker $\varphi = 1$.

Comme $\mathbb{R}_0[X] \subset \ker \varphi$ et que dim $\ker \varphi = 1$ on a donc $\ker \varphi = \mathbb{R}_0[X]$