MATHS SUP

Lycée Laetitia-Bonaparte Ajaccio

PTSI TD

Suites de nombres

1 On rappelle qu'une suite (u_n) est géométrique si : $\exists q \in \mathbb{R} / \forall n \in \mathbb{N}, u_{n+1} = u_n \times q$. Le réel q (indépendant de n) s'appelle raison de la suite (u_n) .

Le *n*-ième terme d'une suite géométrique de raion q est : $u_n = u_0 \times q^n$ (ou : $u_1 \times q^{n-1} \dots$) **1.** Montrer que : $\forall n \in \mathbb{N}, \forall q \in \mathbb{R} \setminus \{1\}, \ 1+q+q^2+\dots+q^n = \frac{1-q^{n+1}}{1-q}$.

En déduire que la somme des termes consécutifs d'une suite géométrique de raison $q \neq 1$ s'écrit

$$S = \frac{1^{er} \text{terme} - q \times \text{dernier terme}}{1 - q}$$

2. Applications: **a.** Calculer, pour $x \in \mathbb{R} \setminus \{1\}$ et $n \in \mathbb{N}$: $1 + x + x^2 + \ldots + x^n$. En déduire que pour x réel: $|x| \leq \frac{1}{2} \Longrightarrow \left|\frac{1}{1-x} - (1+x+x^2+\ldots+x^n)\right| \leq 2|x|^{n+1}$. **3.** Calculer, pour $x \in \mathbb{R} \setminus \{-1,1\}$ et $n \in \mathbb{N}$: $1+x^2+\ldots+x^{2n}$. Calculer, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$: $1-x^2+x^4+\ldots+(-1)^n x^{2n}$.

2 Suites arithmético-géométriques

Pour $q \in \mathbb{R} \setminus \{1\}$ et $a \in \mathbb{R}^*$ on pose f(x) = qx + a.

Soit la suite (x_n) définie par $x_0 \in \mathbb{R}$ et : $\forall n \in \mathbb{N}, x_{n+1} = qx_n + a$.

- **1.** Calculer $\alpha \in \mathbb{R}$ tel que $f(\alpha) = \alpha$ (α est appelé point fixe de f).
- **2.** Montrer que la suite $(x_n \alpha)$ est une suite géométrique de raison q.

En déduire x_n en fonction de α, q, a et n.

Exemple : calculer le n-ième terme de la suite (x_n) définie par :

$$x_0 = 1 \text{ et} : \forall n \in \mathbb{N}, x_{n+1} = 3x_n - 1.$$

- 3 1. Soit A un sous-ensemble majoré de \mathbb{R} . Montrer qu'il existe une suite d'éléments de A convergeant vers la borne supérieure de A. (Indication : utiliser la propriété de la borne supérieure en prenant $\varepsilon = \frac{1}{n}$).
- 2. Montrer que tout nombre réel est limite d'une suite de nombres rationnels (Indication : utiliser le fait que \mathbb{Q} est dense dans \mathbb{R} : voir feuille 1).
 - 4 Etudier les limites des suites

1. $\frac{3n^2+2n-1}{5n+3}$; 2. $\frac{5n^4+2n^3+1}{n^3+n^2+2}$; 3. $\frac{2n^2+(-1)^n}{3n^2+(-1)^n}$; 4. $\frac{n^2+\cos n}{2n^2+\sin n}$ 5. $\frac{2^n-3^n}{2^n+3^n}$; 6.

 $\frac{2^n+n^{100}}{2^n-n^{99}}$; 7. Etudier la limite de la suite $\frac{1}{n^3}\sum_{i=1}^n k^2$.

$oxed{5}$ Différentes façons d'étudier la suite $u_n = \sum_{n=1}^{\infty} rac{1}{k}$

1. Montrer que (u_n) est croissante.

- **2.** Montrer que pour tout entier naturel n, $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{1}{2}$. En déduire la limite de la suite (u_n) .
- **3.** Comparaison avec une intégrale : montrer que pour tout entier naturel k > 0 on a : $\frac{1}{k+1} \le \int_{k}^{k+1} \frac{dt}{t} \le \frac{1}{k}.$ Interpréter graphiquement cet encadrement.

En déduire un encadrement de (u_n) et conclure. Donner un équivalent simple de (u_n) .

6 Différentes façons d'étudier la suite $v_n = \sum_{n=0}^{\infty} \frac{1}{k^2}$.

- 1. Montrer que pour tout entier $k \geq 2$ on a $\frac{1}{k^2} \leq \frac{1}{k-1} \frac{1}{k}$. En déduire une majoration de (v_n) . En déduire que (v_n) est convergente et donner un encadrement de la limite.
- 2. Etudier la convergence de (v_n) en comparant avec une intégrale (s'inspirer de l'exercice précédent).

7 Suites géométriques :

Montrer que pour tout entier naturel n et tout réel $a \geq 0$:

$$(1+a)^n \ge 1 + na.$$

En déduire l'étude de la convergence d'une suite géométrique de raison q suivant les valeurs de q.

8 Comparaison avec une suite géométrique :

1. Soit (v_n) une suite convergente vers un réel l>1. Montrer qu'il existe un réel l'>1 et un entier naturel N tel que pour tout entier $n \geq N$ on ait $v_n \geq l'$.

Enoncer et démontrer une propriété analogue pour $0 \le l < 1$.

- **2.** Soit (u_n) une suite de réels strictement positive telle que $\lim \frac{u_{n+1}}{u_n} = l$. Montrer que :
- * Si l > 1 alors $\lim u_n = +\infty$;
- * Si l < 1 alors $\lim u_n = 0$.
- **3.** Mêmes résultat en remplaçant $\lim \frac{u_{n+1}}{u_n} = l$, par $\lim \sqrt[n]{u_n} = l$.

4. Applications: étudier la convergence des suites suivantes:
$$\frac{n^7}{(1,01)^n}; \frac{a^n}{n^p}; \frac{a^n}{n!}; \frac{n^p}{n!}; \frac{n!}{n^34^n} \text{ (a réel et p entier naturel donné)}.$$

Comparer les vitesses de convergence de a^n , n^p , n! et n^n .

9 Utilisations du théorème de comparaison :

- 1. Limite de la suite définie par : $x_n = \frac{\ln(2 + \cos n)}{n}$;
- **2.** Pour $1 \le k \le n$, encadrer $\frac{n}{n^2 + k}$ par deux expressions indépendantes de k; en déduire la

limite de la suite $u_n = \sum_{n=1}^{\infty} \frac{n}{n^2 + k}$;

3. Prouver que si $x \ge 0$ on a : $x - \frac{x^2}{2} \le \ln(1+x) \le x$. En déduire la limite de la suite définie $par: v_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right).$

4. Limite de la suite définie par : $w_n = \frac{1}{n^2} \sum_{k=1}^n E(kx)$.

10 Suites adjacentes:

- 1. On considère les suites définies par $u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$. Montrer que les suites (u_n) et (v_n) sont adjacentes et que leur limite commune est un nombre irrationnel.
- 2. Montrer que les suites $\left(1+\frac{1}{n}\right)^n$ et $\left(1+\frac{1}{n}\right)^{n+1}$ sont adjacentes. En déduire qu'elles sont convergentes. Quelle est leur limite commune ?

11 Soit
$$S_n$$
 la suite définie pour tout entier naturel $n \ge 2$ par $S_n = \sum_{k=1}^n \frac{1}{k}$.

On considère les suites (u_n) et (v_n) définie pour $n \ge 2$ par $u_n = S_n - \ln n$ et $v_n = S_{n-1} - \ln n$.

- **1.** Montrer que : $\forall x \in [0, 1[, x + \ln(1 x) \le 0 \text{ et } x \ln(1 + x) \ge 0.$
- **2.** Montrer que la suite (u_n) est décroissante et que la suite (v_n) est croissante.
- **3.** Montrer que les suites (u_n) et (v_n) sont adjacentes.

12 Suites extraites:

1. Soit φ une application strictement croissante de \mathbb{N} dans \mathbb{N} . Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a :

$$\varphi(n) \ge n$$
.

En déduire que si une suite converge vers un réel l toute suite extraite converge vers l (v. cours).

- **2.** Soit (u_n) une suite telle que (u_{2n}) et (u_{2n+1}) convergent vers l. Montrer que (u_n) converge vers l.
- **3.** Montrer que si une suite (u_n) n'est pas bornée alors il existe une suite extraite de (u_n) qui tend vers l'infini.

Suites récurrentes :

- **13** Soit la suite (u_n) définie par $u_0 = 6$ et $u_{n+1} = \sqrt{5 + 2u_n}$.
- 1. Représenter graphiquement la fonction f telle que $f(x) = \sqrt{5+2x}$ et les premiers termes de la suite (u_n) . Montrer que (u_n) est convergente et trouver sa limite l.
 - **2.** Mêmes question en prenant $u_0 = 0$.
 - **3.** On veut estimer la vitesse de convergence de la suite (u_n) .

Chercher pour celà un réel k tel que : 0 < k < 1 et vérifant : $|u_{n+1} - l| \le k |u_n - l|$. Conclure.

14 1. Etudier les suites récurrentes définies par :

$$\mathbf{a}/u_0 = 1 \text{ et } u_{n+1} = \frac{u_n}{u_n^2 + 1}; \mathbf{b}/u_0 \text{ et } a \text{ réels} > 0 \text{ et } u_{n+1} = \frac{1}{2} \left(u_n + \frac{a^2}{u_n} \right);$$

$$\mathbf{c}/u_0 = 0 \text{ et } u_{n+1} = \frac{1}{3 + u_n};$$

d/
$$u_0 > 0$$
 et $u_{n+1} = u_n + \frac{1}{u_n}$.

- **2.** Plus généralement soit f une fonction définie et monotone sur un intervalle I telle que $f(I) \subset I$. Etudier le sens de variation de la suite (u_n) définie par $u_0 \in I$ et $u_{n+1} = f(u_n)$ suivant que f est croissante ou décroissante sur I. Représenter graphiquement (u_n) dans chaque cas.
 - **15** On considère la suite (u_n) définie par récurrence par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{(1+u_n)^2} \end{cases}$
 - 1. Etudier la convergence de la suite (u_n) et trouver sa limite éventuelle.
- **2.** Montrer que la suite (v_n) définie, pour $n \ge 1$, par $v_n = \frac{1}{u_n} \frac{1}{u_{n-1}}$ est convergente et trouver la limite.
- **3.** Déduire des questions précédentes que la suite (u_n) est équivalente à $\frac{1}{2n}$. (Indication: on pourra utiliser le résultat suivant de la feuille d'exercice n° 2: si une suite (x_n) converge vers l, alors la suite $\frac{x_1 + x_2 + ... + x_n}{n}$ converge aussi vers l).[ex42007]
 - **16** Soit la suite (u_n) définie par $u_0 \in]1,2[$ et, pour tout entier $n \geq 0$:

$$u_{n+1} = u_n + \frac{1}{u_n} - 1.$$

- 1. Représenter graphiquement les premiers termes de cette suite.
- **2. a.** Montrer que pour tout entier naturel n on a : $u_n > 0$ puis pour tout entier naturel $n \ge 1$, $u_n \ge 1$.
 - **2.** b. Démontrer que la suite (u_n) est convergente et calculer sa limite.

On veut démontrer le résultat précédent d'une autre façon.

3. a. Montrer que pour tout entier naturel n on a :

$$|u_{n+1}-1| \le (u_n-1)^2$$
.

En déduire que : $\forall n \in \mathbb{N}, |u_n - 1| \le |u_0 - 1|^{2^n}$.

Retrouver le résultat de la question 2/b/.

3. b. On prend $u_0 = 1, 5$. Trouver un entier naturel N tel que:

$$\forall n \in \mathbb{N}, n \ge N \Longrightarrow |u_n - 1| \le 10^{-10}.[\text{ex}4.2008]$$

 $\boxed{\mathbf{17}}$ Soient a et b deux réels tels que : 0 < a < b. On considère les suites définies par

$$u_0 = a, v_0 = b \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2}{u_n + v_n} \text{ et } v_{n+1} = \frac{v_n^2}{u_n + v_n}.$$

1. Etudier la convergence de (u_n) et (v_n) (on pourra étudier le sens de variation de (u_n) et (v_n) et considérer la suite (t_n) définie par $t_n = u_n - v_n$.

4

2. Soit la suite (w_n) définie par : $w_n = \frac{u_n}{v_n}$. Montrer que (w_n) est toujours définie. Calculer w_n en fonction de w_0 et n et en déduire un expression de (u_n) et (v_n) en fonction de a, b et n.

18 Soit la suite
$$(x_n)$$
 définie pour $n \in \mathbb{N}^*$ par $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$.

- 1. Démontrer que la suite (x_n) est convergente.
- **2.** Soit la suite (y_n) définie pour $n \in \mathbb{N}^*$ par $y_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+n}$. Montrer que les suites (x_n) et (y_n) sont adjacentes. Retrouver le résultat de la question précédente.
 - **3.** Montrer que pour tous entiers naturels non nuls k et n on a l'encadrement :

$$\frac{1}{n} \cdot \frac{1}{1 + \frac{k+1}{n}} \le \int_{1 + \frac{k}{n}}^{1 + \frac{k+1}{n}} \frac{dt}{t} \le \frac{1}{n} \cdot \frac{1}{1 + \frac{k}{n}}.$$
 Interpréter graphiquement.

Retrouver que la suite (x_n) est convergente et calculer sa limite.

19 Soient a et b deux réels tels que 0 < a < b et les suites (u_n) et (v_n) définies par :

$$u_0 = a$$
, $v_0 = b$ et pour tout entier naturel $n : u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Montrer que pour tout entier naturel n on a : $0 < u_n < v_n$.
- **2.** Montrer que les suites (u_n) et (v_n) convergent vers la même limite l. (l est appelée moyenne arithmético-géométrique de a et b).
- **3.** a/ Montrer que pour tous réels x et y tels que $0 < y \le x$ on a :

$$0 \le \sqrt{x} - \sqrt{y} \le \frac{x - y}{2\sqrt{y}}.$$

En déduire que pour tout entier naturel n on a :

$$0 \le v_{n+1} - u_{n+1} \le \frac{(v_n - u_n)^2}{8a}.$$

b/ On prend dans la suite a = 1 et b = 2.

Montrer que pour tout entier naturel n on a :

$$0 \le v_n - u_n \le \frac{1}{8^{2^n - 1}}.$$

4. Calcul numérique de l :

A l'aide de la calculatrice donner un rang N à partir duquel u_n et v_n sont des valeurs approchées de l à 10^{-10} près.[ex32007]

Histoire des mathématiques : la fonction zêta de Riemann, hypothèse de Riemann.

Elle est définie comme la limite de la suite $S_n = \sum_{k=1}^n \frac{1}{n^z}$, notée $\xi(z) = \sum_{k=1}^{+\infty} \frac{1}{n^z}$. Cette fonction ξ est appelée fonction zêta de Riemann, et elle est définie dans $\mathbb{C} - \mathbb{Z}$. Euler (mathématicien suisse, 1707-1783) calcule les valeurs de $\xi(2n)$ pour n entier; ainsi $\xi(2) = \frac{\pi^2}{6}$. Par contre on ne sait pratiquement rien des réels $\xi(2n+1)$; à la surprise générale le français Roger Apéry a démontré en 1979 que le réel $\xi(3)$ est irrationnel. Cette fonction est très importante car elle est liée à la répartition des nombres premiers dans l'ensemble des nombres réels.

Riemmann a conjecturé que les zéros non triviaux de la fonction ξ ont tous une partie réelle égale à 1/2. Malgré tous les efforts cette conjecture, appelés hypothèse de Riemann, n'a toujours pas été démontrée à l'heure actuelle.