MATHS SUP

Lycée Laetitia-Bonaparte Ajaccio

PTSI Colles

ESPACES VECTORIELS (1)

- 1 Soit $F = \{(x, y) \in \mathbb{R}^2 / 2x + 3y = 0\}$. Montrer que F est un sous-espace vectoriel de \mathbb{R}^2 . Trouver une base de F.
- 2 Montrer que $E = \{(x, y, z) \in \mathbb{R}^3 / \exists (\alpha, \beta) \in \mathbb{R}^2 \text{ tel que } x = \alpha + 2\beta, y = \alpha \beta, z = \beta\}$ est un sous-espace vectoriel de \mathbb{R}^3 . En donner une base.
- 3 Soit E l'espace vectoriel des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{R} . Montrer que $F = \{f \in E/af'' + bf' + cf = 0\}$ (où a, b et c sont trois constantes données) est un sous-espace vectoriel de E.
- 4 Pour quelles valeurs du réel a l'ensemble $E = \{(x, y, z) \in \mathbb{R}^3 / x + y 2z = a\}$ est-il un sous-espace vectoriel de \mathbb{R}^3 . En donner alors une base.
- 5 Dans \mathbb{R}^4 on considère les ensembles $V = \{(x, y, z, t) \in \mathbb{R}^4 / x 2y = y + 3z + 2t = 0\}$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 / x + z = y + t\}$.

Montrer que V et F sont des sous-espaces vectoriels de \mathbb{R}^4 . Préciser $V \cap F$ et donner une base de V de F et de $V \cap F$.

- **6** Dans \mathbb{R}^3 on considère les éléments $u=(1,2,3),\ v=(0,1,2),\ w=(2,1,0)$. La famille (u,v,w) est-elle libre dans \mathbb{R}^3 ? Trouver une équation du sous-espace vectoriel engendré par u,v et w.
- Montrer que $\mathbb{R}^3 = F \oplus G$.

7 Dans \mathbb{R}^3 on considère les ensembles $F = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 / x = y \in$

8 Soit P l'espace vectoriel des fonctions polynômes de \mathbb{R} dans \mathbb{R} . On considère dans P les ensembles $F = \{ f \in P/f(1) = f'(1) = 0 \}$ et $G = \{ f \in P/\forall x \in f(x) = ax + b \}$.

Montrer que $P = F \oplus G$.

- $\boxed{\mathbf{9}}$ Soit u une application linéaire de E dans F. Montrer que le noyau de u est un sous-espace vectoriel de E et que l'image de u est un sous-espace vectoriel de F.
- $\lfloor \mathbf{10} \rfloor$ Soit u une application linéaire de E dans F. Montrer que u est injective ssi le noyau de u est égal à $\{0\}$.
- **11** a. Soit f l'application de \mathbb{R}^2 dans \mathbb{R} qui à (x,y) associe 2x-y. Montrer que f est linéaire. Calculer ker f. Que peut-on en déduire pour f?
 - **b.** Même question avec l'application g de \mathbb{R}^2 dans \mathbb{R}^2 définie par g((x,y)) = (x-2y,x+3y).
- 12 Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^2 qui à (x, y, z) associe (x y + z, 2x + y 2z). Montrer que f est linéaire. Est-elle injective ? surjective ? Trouver le noyau et en donner une base.
- 13 Soit E l'espace vectoriel des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{R} . Soit φ l'application de E dans E définie par $\varphi(f) = f f'$. Montrer que φ est un endomorphisme de E. Déterminer le noyau de φ . Conclusion pour φ ?
- <u>14</u> Dans l'ensemble V des vecteurs du plan on considère l'application p de V dans V définie par $p(\vec{x}) = \overrightarrow{x} (\overrightarrow{x}.\overrightarrow{a}) \overrightarrow{a}$, où \overrightarrow{a} est un vecteur donné de V.

Montrer que p est un endomorphisme de V. Déterminez son noyau et son image. Montrer que si \overrightarrow{a} est de norme 1 alors p est un projecteur.